

# Chapter-10

## CELL CYCLE AND CELL DIVISION

#### POINTS TO REMEMBER

**Cell cycle:** The sequence of events by which a cell duplicates its genome, synthesis the other constitutents of the cell and eventually divides into two daughter cells.

## Phases of cell cycle:

#### **Interphase:**

- **G**<sub>1</sub> **Phase**: Cell metabolically active and grows continuously.
- S Phase: DNA synthesis occurs, DNA content increases from 2C to 4C. but the number of chromosomes remains some (2N).
- G<sub>2</sub> Phase: Proteins are synthesised in preparation for mitosis while cell growth continues.

**M Phase (Mitosis Phase):** Starts with nuclear division, corresponding to separation of daughter chromosomes (karyokinesis) and usually ends with division of cytoplasm (cytokinesis).

**Quiescent stage**  $(\mathbf{G}_0)$ : Cells that do not divide and exit  $\mathbf{G}_1$  phase to enter an inactive stage called  $\mathbf{G}_0$ . Cells at this stage remain metabolically active but do not proliferate.

#### **MITOSIS**

**Prophase:** (i) Replicated chromosomes, each consisting of 2 chromatids, condense and become visible.

- (ii) Microtubules are assembled into mitotic spindle.
- (iii) Nucleolus and nuclear envelope disappear.
- (iv) Centriole moves to opposite poles.

**Metaphase:** (i) Spindle fibres attached to kinetochores (small disc-shaped structures at the surface of centromers) of chromosomes.

(ii) Chromosomes line up at the equator of the spindle to form metaphase plate.



**Anaphase:** (i) Centromeres split and chromatids separate.

(ii) Chromatids move to opposite poles.

**Telophase:** (i) Chromosomes cluster at opposite poles.

(ii) Nuclear envelope assembles around chromosome

cluster.

(iii) Nucleolus, golgi complex, ER reform.

**Cytokinesis:** Is the divison of protoplast of a cell into two daughter

cells after Karyokinesis (nuclear division).

**Animal cytokinesis:** Appearance of furrow in plasma membrane which

deepens and joins in the centre dividing cell

cytoplasm into two.

**Plant cytokinesis:** Formation of new cell wall begins with the

formation of a simple precursor – **cell plate** which represents the middle lamella between the walls

elp.com

of two adjacent cells.

#### Significance of Mitosis:

- 1. Growth addition of cells.
- 2. Maintenance of surface/volume ratio.
- 3. Maintenance of chromosome number.
- 4. Regeneration.
- 5. Reproduction in unicellular organism.
- 6. Repair and wound healing.

#### **Meiosis:**

- Specialised kind of cell division that reduces the chromosome number by half, resulting in formation of 4 haploid daughter cells.
- Occurs during gametogenesis in plants and animals.
- Involves two sequential cycles of nuclear and cell division called Meiosis I and Meiosis II.
- Interphase occurs prior to meiosis which is similar to interphase of mitosis except the S phase is prolonged.
- 4 haploid daughter cells are formed.



#### Meiosis I

**Prophase I :** Subdivided into 5 phases.

#### Leptotene:

- Chromosomes make their as single stranded structures.
- Compaction of chromosomes continues.

#### **Zygotene:**

- Homologous chromosomes start pairing and this process of association is called synapsis.
- Chromosomal synapsis is accompanied by formation of synaptonemal complex.
- Complex formed by a pair of synapsed homologous chromosomes is called bivalent or tetrad.

**Pachytene:** Crossing over occurs between non-sister chromatids of homologous chromosomes.

**Diplotene:** Dissolution of synaptonemal complex occurs and the recombined chromosomes separate from each other except at the sites of crossing over. These X-shaped structures are called **chaismata**.

**Diakinesis:** • Terminalisation of chaismata.

- Chromosomes are fully condensed and meiotic spindles assembled.
- Nucleolus disappear and nuclear envelope breaks down.

**Metaphase I : •** Bivalent chromosomes align on the equatorial plate.

 Microtubules from opposite poles of the spindle attach to the pair of homologous chromosomes.

**Anaphase I :** Homologous chromosomes separate while chromatids remain associated at their centromeres.

#### **Telophase I:**

- Nuclear membrane and nucleolus reappear.
- Cytokinesis follows (diad of cells).

**Interkinesis:** Stage between two meiotic divisions. (meiosis I and meiosis II)



#### **Meiosis II**

#### **Prophase II**

- Nuclear membrane disappears.
- Chromosomes become compact.

#### Metaphase II

- Chromosomes align at the equator.
- Microtubules from opposite poles of spindle get attached to kinetochores of sister chromatids.

#### Anaphase II

• Simultaneous splitting of the centromere of each chromosome, allowing them to move towards opposite poles of the cell.

## **Telophase II**

- Two groups of chromosomes get enclosed by a nuclear envelope.
- Cytokinesis follows resulting in the formation of tetrad of cells *i.e.*, 4 haploid cells.

#### Significance of Meiosis

- **1. Formation of gametes :** In sexually reproducing organisms.
- 2. Genetic variability
- **3. Maintenance of chromosomal number:** By reducing the chromosome number in gametes. Chromosomal number is restored by fertilisation of gametes.

## QUESTIONS

## **Very Short Answer Questions (1 mark each)**

- **1.** What are kinetochores?
- **2.** What is interkinesis?
- **3.** Why is mitosis called equational division?
- **4.** Name the stage of meiosis during which synaptonemal complex is formed.
- **5.** What is  $G_0$  phase of cell cycle?

### **Short Answer Questions-II (2 marks each)**

- **6.** Differentiate between cytokinesis of plant and animal cell.
- 7. What is chaismata? State its significance.



- **8.** What happens during S phase of interphase?
- **9.** Distinguish between metaphase of mitosis and metaphase I of meiosis.

### **Short Answer Questions-I (3 marks each)**

- **10.** Differentiate between mitosis and meiosis.
- 11. List the significance of mitosis.
- **12.** Describe the following :
  - (a) Synapase
  - (b) Bivalent
  - (c) Leptotene

#### **Long Answer Questions (5 marks each)**

- 13. With the help of labelled diagram, explain the following:
  - (a) Diplotene
  - (b) Anaphase of mitosis
  - (c) Prophase I
- 14. What is cell cycle? Explain the events occuring in this cycle.

## ANSWERS

elp.com

#### **Very Short Answers (1 mark)**

- 1. Small disc-shaped structure at the surface of the centromeres.
- **2.** The stage between two meiotic divisions.
- 3. The chromosome number in daughter cells is equal to that of the parent cell.
- **4.** Zygotene.
- **5.** Cells which enter a stage where they are metabolically active but no longer proliferate.

#### **Short Answers-II (2 marks)**

**6.** Refer 'Points to Remember'.



- **7.** Refer 'Points to Remember'.
- **8.** Refer 'Points to Remember'.

| 9. |     | Metaphase                                       | Metaphase I                                                                       |
|----|-----|-------------------------------------------------|-----------------------------------------------------------------------------------|
|    | (a) | Chromosome align along the equator of the cell. | Bivalent chromosomes arrange along the equatorial plane Figure 10.3, meta phase I |
|    | (b) | Figure 10.2 (b)                                 | page 169, NCERT Text Book of Biology for                                          |
|    |     | page 165, Text Book of                          | Class XI.                                                                         |
|    |     | Biology for Class XI.                           |                                                                                   |

## **Short Answers-II (2 marks)**

- 10. Refer 'Points to Remember'.
- 11. Refer 'Points to Remember'.
- 12. Refer 'Points to Remember'.

## **Short Answers-II (2 marks)**

- 13. Refer 'Points to Remember'.
- 14. Refer 'Points to Remember'.